STATISTICS and PROBABILITY

LECTURE: CONFIDENCE INTERVAL

Prof. Dr. İrfan KAYMAZ
Atatürk University
Engineering Faculty
Department of Mechanical Engineering
objectives of this lecture

Confidence Interval

After carefully following this lecture, you should be able to do the following:

1. Construct confidence intervals on the mean of a normal distribution, using either the normal distribution or the t distribution method.
2. Construct confidence intervals on the variance and standard deviation of a normal distribution.
3. Construct confidence intervals on a population proportion.
4. Use a general method for constructing an approximate confidence interval on a parameter.
5. Construct prediction intervals for a future observation.
6. Construct a tolerance interval for a normal population.
7. Explain the three types of interval estimates: Confidence intervals, prediction intervals, and tolerance intervals.
In the previous lecture we illustrated how a parameter can be estimated from sample data. However, it is important to understand how good is the estimate obtained.

Bounds that represent an interval of plausible values for a parameter are an example of an interval estimate.

Three types of intervals will be presented:

- Confidence intervals
- Prediction intervals
- Tolerance intervals
\bar{X} is normally distributed with mean μ and variance σ^2/n. We may standardize \bar{X} by subtracting the mean and dividing by the standard deviation, which results in the variable

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \quad (8-1)$$

The random variable Z has a standard normal distribution.
A confidence interval estimate for μ is an interval of the form $l \leq \mu \leq u$, where the endpoints l and u are computed from the sample data. Because different samples will produce different values of l and u, these end-points are values of random variables L and U, respectively. Suppose that we can determine values of L and U such that the following probability statement is true:

$$P\{L \leq \mu \leq U\} = 1 - \alpha$$

(8-2)

where $0 \leq \alpha \leq 1$. There is a probability of $1 - \alpha$ of selecting a sample for which the CI will contain the true value of μ. Once we have selected the sample, so that $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$, and computed l and u, the resulting confidence interval for μ is

$$l \leq \mu \leq u$$

(8-3)
The endpoints or bounds l and u are called lower- and upper-confidence limits, respectively.

Since Z follows a standard normal distribution, we can write:

$$P\left\{-z_{\alpha/2} \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right\} = 1 - \alpha$$

Now manipulate the quantities inside the brackets by (1) multiplying through by σ/\sqrt{n}, (2) subtracting \bar{X} from each term, and (3) multiplying through by -1. This results in

$$P\left\{\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

(8-4)
Definition

If \bar{x} is the sample mean of a random sample of size n from a normal population with known variance σ^2, a $100(1 - \alpha)$% CI on μ is given by

$$\bar{x} - z_{\alpha/2} \sigma / \sqrt{n} \leq \mu \leq \bar{x} + z_{\alpha/2} \sigma / \sqrt{n} \tag{8-5}$$

where $z_{\alpha/2}$ is the upper $100\alpha/2$ percentage point of the standard normal distribution.
Example 1

Confidence Interval

ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic materials. The Charpy V-notch (CVN) technique measures impact energy and is often used to determine whether or not a material experiences a ductile-to-brittle transition with decreasing temperature.

Ten measurements of impact energy (J) on specimens of A238 steel cut at 60°C are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is normally distributed with \(\sigma = 1 \)J.

We want to find a 95% CI for \(\mu \) the mean impact energy.
Example

Confidence Interval

SOLUTION:
Confidence Level and Precision of Error

The length of a confidence interval is a measure of the precision of estimation.

Figure: Error in estimating μ with \bar{x}
If \(\bar{x} \) is used as an estimate of \(\mu \), we can be \(100(1 - \alpha)\% \) confident that the error \(|\bar{x} - \mu| \) will not exceed a specified amount \(E \) when the sample size is

\[
n = \left(\frac{z_{\alpha/2} \sigma}{E} \right)^2 \quad (8-6)
\]
Example 2

Confidence Interval

To illustrate the use of this procedure, consider the Example 1 in which CVN test is described.

How large should the sample size be if in estimating the mean impact energy there is to be a 95% CI that the error will be less than 0.5J.
A Large-Sample Confidence Interval for μ

When n is large, the quantity

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has an approximate standard normal distribution. Consequently,

$$\bar{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

(8-11)

is a large sample confidence interval for μ, with confidence level of approximately $100(1 - \alpha)\%$.
Example 3: Confidence Interval

The sample mean and sample standard deviation for AGNO of a random sample of 100 freshman at Ataturk University are 2.5 and 0.2, respectively.

Find a 99% CI for the mean μ of AGNO for the entire freshman class.
Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2. The random variable

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

(8-13)

has a t distribution with $n - 1$ degrees of freedom.
Confidence Interval on the Mean of a Normal Distribution, Variance Unknown

The t distribution

Probability density functions of several t distributions.
Confidence Interval on the Mean of a Normal Distribution, Variance Unknown

The 𝑡 distribution

Figure: Percentage points of the 𝑡 distribution.
The *t* Confidence Interval on μ

If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2, a $100(1 - \alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \leq \mu \leq \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n}$$ \hspace{1cm} (8-16)

where $t_{\alpha/2, n-1}$ is the upper $100\alpha/2$ percentage point of the *t* distribution with $n - 1$ degrees of freedom.
Example 4: Confidence Interval

The load at specimen failure is as follows (in megapascals);

<table>
<thead>
<tr>
<th>19.8</th>
<th>10.1</th>
<th>14.9</th>
<th>7.5</th>
<th>15.4</th>
<th>15.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>18.5</td>
<td>7.9</td>
<td>12.7</td>
<td>11.9</td>
<td>11.4</td>
</tr>
<tr>
<td>11.4</td>
<td>14.1</td>
<td>17.6</td>
<td>16.7</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>8.8</td>
<td>13.6</td>
<td>11.9</td>
<td>11.4</td>
<td></td>
</tr>
</tbody>
</table>

Find a 95% CI for the mean μ of the load causing the failure of the adhesion
Let \(X_1, X_2, \ldots, X_n \) be a random sample from a normal distribution with mean \(\mu \) and variance \(\sigma^2 \), and let \(S^2 \) be the sample variance. Then the random variable

\[
X^2 = \frac{(n - 1) S^2}{\sigma^2}
\]

(8-17)

has a chi-square (\(\chi^2 \)) distribution with \(n - 1 \) degrees of freedom.
Confidence Interval on the Variance and Standard Deviation of a Normal Distribution

Figure: Probability density functions of several χ^2 distributions.
If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2, then a $100(1 - \alpha)\%$ confidence interval on σ^2 is

\[
\frac{(n - 1)s^2}{\chi^2_{\alpha/2, n-1}} \leq \sigma^2 \leq \frac{(n - 1)s^2}{\chi^2_{1-\alpha/2, n-1}}
\] \hspace{1cm} (8-19)

where $\chi^2_{\alpha/2, n-1}$ and $\chi^2_{1-\alpha/2, n-1}$ are the upper and lower $100\alpha/2$ percentage points of the chi-square distribution with $n - 1$ degrees of freedom, respectively. A confidence interval for σ has lower and upper limits that are the square roots of the corresponding limits in Equation 8-19.
Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.
Example 5: \hspace{1cm} \textit{Confidence Interval}

A rivet is to be inserted into a hole. A random sample of \(n = 15 \) parts is selected, and the hole diameter is measured.

The sample standard deviation of the hole diameter measurements is \(s = 0.008 \) millimeters. Construct a 99% lower confidence bound for the variance.
If n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1 - p)}} = \frac{\hat{P} - p}{\sqrt{p(1 - p)/n}}$$

is approximately standard normal.

The quantity $\sqrt{p(1 - p)/n}$ is called the standard error of the point estimator \hat{P}.
If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate 100$(1 - \alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$$ \hspace{1cm} (8-23)

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution.
Example 6: Confidence Interval

In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish that is rougher than the specifications allow.

Find a 95% CI for the bearings that exceeds the roughness specification.
Hypothesis Testing.....